Parallel hierarchical sampling: a general-purpose class of multiple-chains MCMC algorithms
نویسندگان
چکیده
This paper introduces the Parallel Hierarchical Sampler (PHS), a class of Markov chain Monte Carlo algorithms using several interacting chains having the same target distribution but different mixing properties. Unlike any single-chain MCMC algorithm, upon reaching stationarity one of the PHS chains, which we call the “mother” chain, attains exact Monte Carlo sampling of the target distribution of interest. We empirically show that this translates in a dramatic improvement in the sampler’s performance with respect to single-chain MCMC algorithms. Convergence of the PHS joint transition kernel is proved and its relationships with single-chain samplers, Parallel Tempering (PT) and variable augmentation algorithms are discussed. We then provide two illustrative examples comparing the accuracy of PHS with Department of Statistics and Centre for analytical Science, University of Warwick, UK; [email protected] Professor of Statistics, Department of Economics, University of Insubria, Italy; [email protected]
منابع مشابه
Orthogonal parallel MCMC methods for sampling and optimization
Monte Carlo (MC) methods are widely used in statistics, signal processing and machinelearning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC)algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have beenrecently introduced. In this work, ...
متن کاملLayered Adaptive Importance Sampling
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities for drawing candidate samples. Performance of any such method is strictly related to the specification of the proposal ...
متن کاملPerfection within Reach: Exact MCMC Sampling
The amount of research done by the MCMC community has been very impressive in the last two decades, as testified by this very volume. The power of MCMC has been demonstrated in countless instances in which more traditional numerical algorithms are helpless. However, one ubiquitous problem remains: the detection of convergence or lack thereof. Among the large number of procedures designed for de...
متن کاملMental Sampling in Multimodal Representations
Both resources in the natural environment and concepts in a semantic space are distributed “patchily”, with large gaps in between the patches. To describe people’s internal and external foraging behavior, various random walk models have been proposed. In particular, internal foraging has been modeled as sampling: in order to gather relevant information for making a decision, people draw samples...
متن کاملHigh-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing
[1] Spatially distributed hydrologic models are increasingly being used to study and predict soil moisture flow, groundwater recharge, surface runoff, and river discharge. The usefulness and applicability of such complex models is increasingly held back by the potentially many hundreds (thousands) of parameters that require calibration against some historical record of data. The current generat...
متن کامل